

KINGDOM OF CAMBODIA NATION RELIGION KING

ELECTRICITE DU CAMBODGE

ANNEX of TECHNICAL POLICY

EDC-TP-002-TDS

Technical Data Sheets

EARTHINGS for MV and LV Distribution Networks

August 2019

Version 1.0

Version	Date	Annex of Technical Policy	Authorized by : (name and signature)
1.0	August, 2019	Technical Data Sheet Earthing for MV and LV Distribution for Networks	Dr. PRAING CHULAS

Page 3/37 m/s

Version	Drafted/reviewed by	Verified by	Approved by	Date
Draft1	AD			
Draft 2	EDC/AD			August 2018
Draft 3	EDC/AD			December 2018
Final	EDC/AD			August 2019
destreet 1220au				
	HH BEN BANN HE BOARD AND NOT THE POST OF COMPANY AND			

DE PRAING CHULASA

Page 4 / 37 M 8

Content

TDS N°1.1	: Ohmic Value of Earthing and periodicity of controls, HV/MV and MV/MV Substations
TDS N°1.2	: Ohmic Value of Earthing and Periodicity of Controls, MV/LV Substations, RMU Cabinet, and OPS
TDS N°1.3	: Ohmic Value of Earthing and Periodicity of Controls, Other MV Equipment
TDS N°2	: Separated MV Mass and LV Neutral Earthings, Distance between Earthings to be Respected
TDS N°3	: Forms of Earthings
TDS N°4	: Earthings Connection of a MV Metallic Tubular Pole or Steel Tower
TDS N°5	: Earthings Connection of Manually Operated Pole Mounted Load Break Switch
TDS N°6	: Earthings Connection of Remote-Controlled pole Mounted Load Break Switch and Recloser with Surge Arresters Fixed onto the Apparatus
TDS N°7	: Earthings Connection of Pole Mounted Load Break Switch with Surge Arresters on Cross Arm
TDS N°8	: Earthings Connection of Pole Mounted Recloser
TDS N°9	: Earthings Connection of Surge Arrester and Cross Arm Only
TDS N°10.1	: Earthings Connection of MV Overhead ABC Network – Junctions
TDS N°10.2	: Earthings Connection of MV Overhead ABC Network – at the Ends
TDS N°11	: Earthings Connection of MV Underground Network
TDS N°12	: Earthings Connection of MV Overhead/Underground Interface
TDS N° 13	: Pole Earthings Installation
TDS N°14	: Masses Earthings for OPS, RMU cabinet, Prefabricated and Indoor Substation - Equipment to be Connected to the Equipotential Bonding Conductor
TDS N°15	: Masses Earthings for Prefabricated or Built Substation, OPS and RMU Cabinet - Earthing Circuit
TDS N°16	: Masses Earthings for Prefabricated or Built Substation, OPS and RMU Cabinet - Main Earthing Board
TDS N°17	: Earthings Connection of Pole Mounted Substation
TDS N°18	: LV Neutral Earthings on ABC Network
TDS N°19	: LV Neutral Earthing Connection on ABC Network
TDS N°20	: LV Neutral Earthing Connection on Underground LV Network
TDS N°21	: LV Neutral Earthing Connection inside Cabinets on LV Underground Network
TDS N°22	: Condition for Connection of LV Neutral to Mass Earthing Page 5/37 My Le CH Co

Page 5/37 My Le CH O

- TDS N°23 : Measurement of Soil Resistivity
- TDS N°24.1 : Measure of Earthing Resistances
- TDS N°24.2 : Process for Measuring Earthing Resistances and Coupling
- TDS N°25 : Safety
- TDS N°26 : Specific Connectors for Earthing

EDC-TP-002		TDS N°1.1
Technical data	Ohmic Value of Earthing and Periodicity of Controls	February
sheets	HV/MV and MV/MV Substations	2019

1. HV/MV Substations

HV/MV Substations	Maximal value	Checking of value
Mass earthing of the whole substation	1.0 Ω	Every year

2. MV/MV Substations (Step-up and Step-down Transformers)

MV/MV Substations	Maximal value	Checking of value
Mass earthing of the whole substation	10.0 Ω	Every 5 years

EDC-TP-002		TDS N°1.2
Technical data	Ohmic Value of Earthing and Periodicity of Controls	February
sheets	MV/LV Indoor Substations, PTT, RMU Cabinet, and OPS	2019

Legend:

LBE = Loop at the Bottom of Excavation, **EB** = Equipotential Belt

Notes: 1. The values in the tables of this sheet are maximum values;2. Substation does not have an equipotential belt when integrated to building.

Area	Type of earthing	Earthing value (22kV phase/earth fault current limited to 800 Amperes)			
1/ Urban and peri-urba interconnected.	1/ Urban and peri-urban areas: with MV masses earthing and LV neutral earthing are interconnected.				
	LBE + EB (Masses)	Not applicable in full urban area with full MV underground network			
Before interconnection		10.0 Ω in peri-urban area			
	Global value of LV neutral earthing	5.0 Ω or less			
After interconnection	Global earthing (Mass + LV neutral)	1.0 Ω or less			
2/ Peri-urban areas and rural areas: with separated MV masses earthing and LV neutral earthing.					
	MV masses earthing	10.0 Ω with LBE and EB			
	Global LV neutral earthing	5.0 Ω or less			

Periodicity of controls: every 5 years at least

Types of checking carried out:

• Urban and peri-urban areas with full MV underground network: Verification of links (continuity, connections);

• Peri-urban with interconnection of the earthing connections: measurement of the value of the earth connection of the interconnected system, if this type of measurement is physically possible taking into account the environment of the structure, and verification of the links (continuity, connections);

• Peri-urban or rural areas with separation of the earthings (MV masses and LV neutral): measurement of earthing value of the MV masses, the global earthing of the LV neutral and the coupling coefficient of the first grounding of the LV neutral with grounding of MV masses.

EDC-TP-002		TDS N°1.3
Technical data	Ohmic Value of Earthing and Periodicity of Controls	February
sheets	Other MV Equipment	2019

Equipment Mass	Max Ohmic value (Ω)	Periodicity of control
Metallic Pole	100.0	NA
Load Break Switch	10.0	5 years
Recloser	10.0	5 years
AVR	10.0	5 years
Pole Mounted Substation	10.0	5 years

EDC-TP-002		TDS N°2
Technical data	Separated MV Mass and LV Neutral Earthings	February
sheets	Distance between Earthings to be Respected	2019

When the earthing of the MV masses and LV neutral are not connected together, the distances to be respected between those earthings are given in the table below.

Minimal distance between MV mass earthing and any LV neutral earthing			
	Minimum distance		
Soil resistivity p	(with 22kV MV neutral impedance limiting the fault current to about 800A)		
ρ < 300 Ω.m	25 m		
300 Ω.m ≤ ρ < 500 Ω.m	50 m		
500 Ω.m ≤ ρ < 1000 Ω.m	75 m		
ρ ≥ 1000 Ω.m	To be studied case by case		

Page 10 / 37 N 19

EDC-TP-002		TDS N°3
Technical data sheets	Forms of Earthings	February 2019

Soil resistivity	Loop at l excav	oottom of vation	Rod	Net or grid	Folded conductors (serpentine)		Multidirectional	
		J			3m,	3m 3m	5m 5m	mol
	2 m perimeter	10 m perimeter	3 m	2m x 0.4m 0.8 m deep	10 m in trench 3m	2x10m in 2 trenches 3m	2x15m in 2 trenches 5m	3 rectilinear branches of 10 m + 1 central injection point (from 3 to 5m
50 Ω.m	30 Ω	8Ω	17 Ω	12 Ω	12 Ω	7Ω	5 Ω	3Ω
100 Ω.m	60 Ω	17 Ω	34 Ω	25 Ω	25 Ω	14 Ω	10 Ω	6 Ω
200 Ω.m	120 Ω	34 Ω	66 Ω	50 Ω	50 Ω	28 Ω	20 Ω	12 Ω
300 Ω.m		50 Ω	100 Ω	75 Ω	75 Ω	42 Ω	30 Q	18 Ω
400 Ω.m		66 Ω	133 Ω	100 Ω	100 Ω	56 Ω	40 Ω	24 Ω
500 Ω.m				125 Ω	125 Ω	70 Ω	50 Ω	30 Ω
750 Ω.m						105 Ω	75 Ω	45 Ω
1000 Ω.m				_			100 Ω	60 Ω

Flow of fault currents

Expected grounding values based on soil resistivity and shape

Efficient only at power frequency current (50 Hz)

Efficient at 50 Hz and high frequency currents (Surge)

Flow of impulse fault currents (atmospheric, surge ...)

The shape of the grounding is preponderant in its ability to flow surge currents; in the current state of knowledge, an earthing formed by a crow's foot on the surface (3 straight strands, associated or not with nets, 5.0 m to 10.0 m maximum) associated with a central injection point (rod of 3.0 m to 5.0 m) allows the flow in good conditions of the atmospheric currents.

A multi-directional surface earth should first be investigated and then, if necessary, engthened conductors or nets to obtain the necessary ohmic value. *

> This is the mass earthing form to be used in case of surge arresters ECTRICITE

Page 11 / 37 M & W (5

EDC-TP-002	Earthings Connection of	TDS N°4
Technical data sheets	MV Metallic Tubular Pole or Steel Tower	February 2019

1/ Tubular metallic pole

2/ Steel tower

Version 1.0

EDC-TP-002		TDS N°13
Technical data sheets	Pole Earthings Installation	February 2019

View from top

EDC-TP-002	Masses Earthings for	TDS N°14
Technical data sheets	OPS, RMU Cabinet, Prefabricated and Indoor Substation,	February 2019
	Equipment to be Connected to the Equipotential Bonding	
	Conductor	

1/ One Pilar Substation (OPS)

- Transformer
- Separable connector earthing braids (cable screen)
- Frame of LVDB
- Metallic body of OPS (care shall be taken that the door is connected to the body with extra flexible conductor)
- Any other metallic mass

2/ RMU Cabinet

- RMU
- Metallic body of Cabinet (care shall be taken that the doors are connected to the body with extra flexible conductor)
- Any other electrical equipment as RTU, etc....

3/ Prefabricated (PTT) and indoor substations

- Steel reinforcement of the concrete by a connection connecting one of the bars of the reinforcement to the main equipotential bonding conductor
- the MV cable screens via the protective conductor of the MV switchboard;
- the MV RMU via a terminal provided for this purpose;
- the frame of LV switchboards;
- metal cable trays;
- the transformer tank;
- Transformer separable connector cable screens;
- earth terminals of measurement transformers, capacitors, etc. ;
- protective metal screens and panels;
- the cell fences, the control panel of the devices and the various fittings in the open type substations
- the doors;
- the masses of control equipment
- RTU if any,
- envelop of metallic prefabricated substation
- any other metal masses.

Page 24 / 37 M /

downstream of the main earth terminal.

TT

Main earthing board: Made of 20 mm x 3 mm copper bar, hole diameters = 10.5 mm, central pin dimensions: L = 40 mm, Φ = 12 mm and fixed against the wall with a distance of about 25 mm.

Page 26 / 37 K

EDC-TP-002		TDS N°18
Technical data sheets	LV Neutral Earthings on ABC Network	February 2019

1/Feeder length L \leq 100 m

2/ Feeder length L > 100 m

3/ Case of several feeders

4/ Distribution of LV neutral eartings:

DU

rsion 1.0

10

- In addition to a point in the network as soon as the length of the line exceeds 100 meters;

- The number of earthing is equal to or greater than one every 200 meters of feeder network length;
- One LV neutral earthing is near each major branch or group of individual branches.

The distance d is specified in technical data sheet N°2.

A

The coupling measurement point is located about 1 meter below the ABC. It is constituted of 2 compressed tin copper forged lugs and one stainless steel bolt (see TDS below)

The 35 mm² copper insulated UV protected conductor is mandatorily attached to the ABC before entering in the IPC and the outersheath is removed. Piercing is done through the insulation.

Page 29 / 37 M

Single Line Diagram for LV Neutral Earthing Connection on Underground Networks

EDC-TP-002		TDS N°21
Technical data	LV Neutral Earthing Connection inside LV Underground	February
sheets	Network Connection Cabinets	2019

Page 32 / 37 M

EDC-TP-002		TDS N°23
Technical data sheets	Measurement of Soil Resistivity	February 2019

Point "O" : Location of future earthing

Note: The four rods MUST be in straight line

a : 4 m

 $\rho\text{:}$ Soil resistivity in Ωm

R: Value measured on the testing apparatus

For a = 4.0 m, we have ρ = 25.R

The general formulae is: $\rho = 2\pi$. *a*. *R*

a : may vary for deeper measurement.

Page 33 / 37 M / 19 M

S

*

EDC-TP-002		TDS N°24.2
Technical data sheets	Process for Measuring Earthing Resistances and Coupling	February 2019

- 1/ Measure the RM resistance with the red cord (see drawing 24.a). Note: This method applies to any measure of single earthing.
- 2/ Measure the resistance of the global earthing of the LV neutral RNg with the blue (see drawing 24.a).
- 3/ Determine the coefficient of coupling:
 - 3.1/ If there is only one neutral earthing, do not disconnect because RNg = RNi and go to step 3.4
 - 3.2/ if there are several neutral earthings on the network, disconnect the point A and measure the resistance of the individual LV neutral earthing RNi (blue cord in place with A disconnected)
 - 3.3/ Check that RNi> RNg.
 - 3.4/ Proceed to RNM measurement according to the following drawing.

- 3.5/ Check that: $RM + RNi \ge RNM$.
- 3.6/ Calculate the coupling resistance Rc

$$\mathbf{Rc} = \frac{\mathbf{RM} + \mathbf{RNi} - \mathbf{RMN}}{2}$$

3.7/ Calculate the coefficient of coupling C

$$C = RC/RM$$

Make sure that C < 0.15

4/ Restore the link at point A.

Page 35 / 37 N / 10 /

EDC-TP-002		TDS N°25
Technical data sheets	Safety	February 2019

- > It is forbidden to intervene during thunderstorms on the earthing circuit of a structure in service.
- The operator must wear its individual protection equipment as well as LV insulating gloves and be located on the insulating mat.
- > The absence of voltage between two earthing must be permanently checked
- In case the work requires the opening of the earthing circuit of a structure in service, the continuity of the grounding of each circuit element to be separated must be ensured: either by placing a shunt maintained throughout the intervention, either by connecting the part to be separated from the earth ground to an existing or created auxiliary earth ground.

Page 36 / 37 M

EDC-TP-002		TDS N°26
Technical data sheets	Specific Connectors for Earthing	February 2019

1/ Tin copper C connector: For earthing tap connection that can be buried in the ground

For connection of copper or galvanized mild steel earthing conductors

2/ Tin copper forged lug: For mass connection that cannot be buried in the ground

For connection of copper earthing conductors. Associated with heat shrinkable tube for hot dip galvanized earthing conductor

3/ LV neutral coupling measuring point: For mass connection that cannot be buried in the ground

